$R_{\rm int} = 0.067$

 $0.32 \times 0.12 \text{ mm}$

11431 measured reflections

6019 independent reflections

4791 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,10-phenanthroline-5,6-dione- $\kappa^2 N.N'$ silver(I) perchlorate

Jonathan Onuegbu, Ray J. Butcher,* Charles Hosten, Uche Charles Udeochu and Oladapo Bakare

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: raymond.butcher@nrl.navy.mil

Received 15 June 2007; accepted 31 July 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.007 Å; R factor = 0.066; wR factor = 0.184; data-to-parameter ratio = 17.5.

At 93 K, in the structure of a new polymorph of $[AgL_2]^+$ - $(ClO_4)^-$ (L = 1,10-phenanthroline-5,6-dione) or $[Ag(C_{12}H_6 -$ N₂O₂)₂]ClO₄, there is a complete formula unit in the asymmetric unit. The dihedral angle between the two phendione ligands is $36.7 (2)^{\circ}$. The geometry about the Ag atom is distorted tetrahedral. There are short contacts between the perchlorate anion and the phendione ligands $[O \cdots C = 2.845 (5) \text{ Å}]$, as well as unusual and different O-C-C-O torsion angles for the two phendione ligands $[-21.9(7) \text{ and } -5.0(7)^{\circ}]$, which reflects the fact that in this polymorph there is no crystallographically imposed symmetry in the cation.

Related literature

For related literature, see: Allen (2002); Galet et al. (2005); Leschke et al. (2002); McCann et al. (2004); Pallenberg et al. (1997); Paramonov et al. (2003); Titze et al. (1997); Wen et al. (2006).

Experimental

Crystal data

$Ag(C_{12}H_6N_2O_2)_2]ClO_4$	$\gamma = 97.378 \ (4)^{\circ}$
$M_r = 627.70$	V = 1097.8 (5) Å ³
Friclinic, P1	Z = 2
$a = 8.493 (2) \text{ Å}_{1}$	Mo $K\alpha$ radiation
b = 11.260 (3) Å	$\mu = 1.10 \text{ mm}^{-1}$
c = 13.190 (4) Å	T = 93 (2) K
$\alpha = 112.525 \ (3)^{\circ}$	$0.38 \times 0.32 \times 0.11$
$\beta = 103.682 \ (4)^{\circ}$	

Data collection

Bruker APEX II CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2000) $T_{\min} = 0.679, T_{\max} = 0.879$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	343 parameters
$vR(F^2) = 0.184$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 2.36 \text{ e} \text{ Å}^{-3}$
019 reflections	$\Delta \rho_{\rm min} = -1.63 \text{ e } \text{\AA}^{-3}$

Table 1

6

Selected geometric parameters (Å, °).

Ag–N2A	2.261 (3)	Ag-N2B	2.349 (3)
Ag–N1B	2.331 (4)	Ag-N1A	2.453 (4)
N2A - Ag - N1B $N2A - Ag - N2B$ $N1B - Ag - N2B$	129.69 (12)	N2A – Ag – N1A	70.77 (11)
	158.05 (13)	N1B – Ag – N1A	144.28 (12)
	71.16 (12)	N2B – Ag – N1A	95.79 (12)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8A - H8AA \cdots O1B^{i}$	0.93	2.54	3.170 (5)	125
$C1B-H1BA\cdots O14^{ii}$	0.93	2.50	3.380 (5)	157
$C8B - H8BA \cdots O11^{i}$	0.93	2.58	3.155 (6)	121
$C1A - H1AA \cdots O2B^{iii}$	0.93	2.47	3.159 (5)	131
$C6B - H6BA \cdots O2A^{iv}$	0.93	2.47	3.203 (5)	136
$C6A - H6AA \cdots O13^{v}$	0.93	2.45	3.235 (6)	142
$C8B - H8BA \cdot \cdot \cdot O1A^{vi}$	0.93	2.48	3.158 (6)	130
$C2A - H2AA \cdots O12^{vii}$	0.93	2.55	3.268 (6)	134
$C3A - H3AA \cdots O11^{vii}$	0.93	2.57	3.464 (7)	162

-x + 1, -y + 2, -z + 1; (iv) x + 1, y + 1, z + 1; (v) x, y - 1, z - 1; (vi) -x + 1, -y + 1, -z; (vii) x + 1, y, z - 1.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2045).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2000). *SHELXTL* (Version 6.14) and *SADABS* (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.45A. Bruker AXS Inc., Madison, Wisconsin, USA.Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A.
- (2005). Z. Anorg. Allg. Chem. **631**, 1985–1987.
- Leschke, M., Rheinwald, G. & Lang, H. (2002). Z. Anorg. Allg. Chem. 628, 2470-2477.
- McCann, M., Coyle, B., McKay, S., McCormack, P., Kavanagh, K., Devereux, M., McKee, V., Kinsella, P., O'Connor, R. & Clynes, M. (2004). *Biometals*, 17, 635–645.
- Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711–2719.
- Paramonov, S. E., Kuzmina, N. P. & Troyanov, S. I. (2003). *Polyhedron*, **22**, 837–841.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Titze, C., Kaim, W. & Zalis, S. (1997). Inorg. Chem. 36, 2505–2510.
- Wen, M., Kejia, E., Munakata, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Yan, S.-G. (2006). *Mol. Cryst. Liq. Cryst.* **457**, 203–213.

Acta Cryst. (2007). E63, m2309-m2310 [doi:10.1107/S1600536807037580]

Bis(1,10-phenanthroline-5,6-dione- $\kappa^2 N, N'$)silver(I) perchlorate

J. Onuegbu, R. J. Butcher, C. Hosten, U. C. Udeochu and O. Bakare

Comment

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties. Since the stereochemical behavior of Cu^+ and Ag^+ are similar it is interesting to compare the behavior of these cations with phendione. Isomorphous and isostructural Cu^+ and Ag^+ derivatives {[$M(L)_2$](ClO₄)₂, where $M = Cu^+$ and Ag^+ } have recently been determined (Galet *et al.*, 2005; McCann *et al.*, 2004) as well as a Ag^+ complex, with trifluoromethanesulfonate instead of perchlorate as counterion (Wen *et al.*, 2006). In addition a polymeric Ag^+ phendione complex where the ligand coordinates to Ag through N and O donors has been reported (Wen *et al.*, 2006). In this paper we report the synthesis and characterization of the title compound, $[AgL_2]^+(ClO_4)^-$ (I).

The structure of the title compound, shown in Figure 1, is made up of an $[Ag(L)_2]^+$ cation and a perchlorate anion. Each silver atom is coordinated to the two nitrogen atoms of both phendione ligands. In contrast to the previous structure determination of this complex where there is crystallographically imposed symmetry on both the anion and cation in the present case there is no such symmetry. Table 1 gives a listing of selected bond lengths and bond angles. The C=O bond lengths in the phendione ligands (1.220 (5) Å and 1.207 (5) Å) are comparable to those values found in other such complexes (Allen, 2002). The metrical parameters for the phendione ligand is in the normal ranges observed for complexes where only the N atoms are coordinated to a metal (Allen, 2002). The Ag—N bond lengths (2.261 (3), 2.331 (4) Å, 2.349 (3) Å, and 2.453 (4) Å) are similar to those found in related phenanthroline derivatives of silver (McCann *et al.*, 2004; Wen *et al.*, 2006; Leschke *et al.*, 2002; Paramonov *et al.*, 2003; Pallenberg *et al.*, 1997; Titze *et al.*, 1997). In I, silver is in a distorted tetrahedral environment. This is best illustrated by the dihedral angle between the planes of the coordinated ligands which would be 90° for tetrahedral and 0° for planar. In this case the angle is 36.7 (2)° which is intermediate between these extremes.

There are weak C—H···O hydrogen bonds between the hydrogen atoms on C1A, C1B, C2A, C6A, C6B, C8A, and C8B and either perchlorate O atoms or phendione O atoms from an adjoining cation. In addition, there are short contacts between the perchlorate anion and the phendione ligands (O14···C4B 2.845 (5) Å) as well as unusual and different torsion angles for O1—C4—C5—O2 for the two phendione ligands (-21.9 (7)° and -5.0 (7)°) which reflects the fact that in this polymorph there is no crystallographically imposed symmetry on the cation.

Experimental

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 cm^3) was added in small portions, followed by drop wise addition of concentrated nitric acid (10 cm^3). The resulting solution was heated for 2 h at 80–85° C and cooled to room temperature. The solution was then poured into 400 cm³ of water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol-water mixture.

The title compound was synthesized in an atmosphere saturated with N_2 . To a solution of AgClO₄ in 15 ml of CH₃CN, was added drop-wise a solution (15 ml) of CH₃CN containing 0.26 g of phendione. The final yellowish solution was filtered and allowed to slowly evaporate for about a week yielding reddish brown prismatic crystals of the title compound suitable for X-ray studies.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound (I), $[Ag(L)_2]^+(ClO_4)^-$, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The molecular packing of (I) viewed approximately along the c axis. Dotted lines indicate the hydrogen bonding interactions.

Bis(1,10-phenanthroline-5,6-dione- $\kappa^2 N, N'$)silver(I) perchlorate

Crystal data	
[Ag(C ₁₂ H ₆ N ₂ O ₂) ₂]ClO ₄	Z = 2
$M_r = 627.70$	$F_{000} = 624$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.899 {\rm Mg m}^{-3}$
a = 8.493 (2) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.260 (3) Å	Cell parameters from 6560 reflections
c = 13.190 (4) Å	$\theta = 2.6 - 29.9^{\circ}$
$\alpha = 112.525 \ (3)^{\circ}$	$\mu = 1.10 \text{ mm}^{-1}$
$\beta = 103.682 \ (4)^{\circ}$	T = 93 (2) K
$\gamma = 97.378 \ (4)^{\circ}$	Prism, red-brown
$V = 1097.8 (5) \text{ Å}^3$	$0.38 \times 0.32 \times 0.12 \text{ mm}$

Data collection

Bruker APEX II CCD area-detector diffractometer	6019 independent reflections
Radiation source: fine-focus sealed tube	4791 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.067$

T = 273(2) K	$\theta_{max} = 30.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -10 \rightarrow 12$
$T_{\min} = 0.679, \ T_{\max} = 0.879$	$k = -15 \rightarrow 15$
11431 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_o^2) + (0.107P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
6019 reflections	$\Delta \rho_{max} = 2.36 \text{ e} \text{ Å}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -1.63 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag	0.13352 (4)	0.50994 (3)	0.25677 (2)	0.02407 (14)
Cl	-0.44552 (14)	0.71466 (11)	0.77901 (11)	0.0285 (3)
O1A	0.2299 (5)	0.2746 (3)	-0.2772 (3)	0.0303 (7)
C9BB	0.1294 (5)	0.7156 (4)	0.5018 (3)	0.0169 (7)
N2B	0.3438 (5)	0.6887 (3)	0.4071 (3)	0.0193 (7)
N1B	0.0294 (4)	0.6065 (3)	0.4095 (3)	0.0197 (7)
C9AA	0.1678 (5)	0.4269 (4)	0.0013 (3)	0.0160 (7)
O14	-0.6087 (4)	0.7408 (3)	0.7568 (3)	0.0302 (7)
O2B	0.4469 (5)	1.0657 (3)	0.7624 (3)	0.0358 (8)
N2A	0.0182 (4)	0.3212 (3)	0.0921 (3)	0.0174 (6)
O1B	0.1547 (5)	0.9601 (3)	0.7828 (3)	0.0308 (7)
C8A	-0.0858 (5)	0.2175 (4)	0.0876 (4)	0.0215 (8)
H8AA	-0.1122	0.2253	0.1541	0.026*
C1B	-0.1214 (5)	0.5583 (4)	0.4135 (4)	0.0232 (8)
H1BA	-0.1916	0.4830	0.3500	0.028*
C5AA	-0.0150 (5)	0.1964 (4)	-0.1072 (3)	0.0176 (7)
C8BB	0.2980 (5)	0.7637 (4)	0.4973 (3)	0.0169 (7)

C6B	0.5636 (5)	0.9226 (4)	0.5775 (3)	0.0215 (8)
H6BA	0.6364	1.0019	0.6341	0.026*
C3AA	0.2244 (5)	0.4194 (4)	-0.0913 (3)	0.0179 (7)
C7B	0.6096 (5)	0.8460 (4)	0.4850 (4)	0.0230 (8)
H7BA	0.7138	0.8712	0.4781	0.028*
O2A	-0.0645 (5)	0.1084 (4)	-0.3101 (3)	0.0352 (8)
C4B	0.1929 (6)	0.9039 (4)	0.6977 (4)	0.0223 (8)
C3B	-0.0743 (6)	0.7283 (5)	0.6016 (4)	0.0248 (9)
H3BA	-0.1084	0.7688	0.6659	0.030*
C6A	-0.1213 (6)	0.0888 (4)	-0.1098 (4)	0.0239 (8)
H6AA	-0.1679	0.0112	-0.1777	0.029*
N1A	0.2144 (4)	0.5387 (3)	0.0994 (3)	0.0199 (7)
C8AA	0.0549 (5)	0.3108 (4)	-0.0038 (3)	0.0166 (7)
C5A	0.0205 (6)	0.1890 (4)	-0.2137 (4)	0.0209 (8)
C4A	0.1674 (6)	0.2938 (4)	-0.1997 (4)	0.0226 (8)
C8B	0.4943 (6)	0.7290 (4)	0.4016 (4)	0.0229 (8)
H8BA	0.5245	0.6765	0.3388	0.027*
C5BB	0.4073 (5)	0.8811 (4)	0.5863 (3)	0.0174 (7)
C3BB	0.0804 (5)	0.7798 (4)	0.5979 (3)	0.0196 (8)
C2A	0.3813 (6)	0.6438 (4)	0.0180 (4)	0.0243 (9)
H2AA	0.4543	0.7186	0.0267	0.029*
C2B	-0.1769 (6)	0.6150 (4)	0.5072 (4)	0.0271 (9)
H2BA	-0.2814	0.5778	0.5069	0.033*
C3A	0.3321 (5)	0.5288 (4)	-0.0830 (4)	0.0232 (8)
H3AA	0.3704	0.5246	-0.1444	0.028*
O13	-0.3380 (5)	0.7847 (4)	0.7458 (4)	0.0480 (11)
C7A	-0.1556 (6)	0.0998 (4)	-0.0107 (4)	0.0247 (9)
H7AA	-0.2245	0.0293	-0.0097	0.030*
C5B	0.3604 (6)	0.9603 (4)	0.6878 (4)	0.0220 (8)
C1A	0.3188 (5)	0.6445 (4)	0.1060 (4)	0.0201 (8)
H1AA	0.3505	0.7224	0.1737	0.024*
O12	-0.3734 (6)	0.7661 (5)	0.9063 (4)	0.0550 (12)
O11	-0.4590 (6)	0.5775 (4)	0.7348 (5)	0.0566 (13)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag	0.0258 (2)	0.01959 (18)	0.01995 (18)	0.00118 (13)	0.00769 (12)	0.00246 (13)
Cl	0.0157 (5)	0.0261 (5)	0.0515 (7)	0.0045 (4)	0.0112 (4)	0.0243 (5)
O1A	0.0285 (18)	0.0360 (18)	0.0269 (15)	0.0071 (15)	0.0155 (13)	0.0100 (14)
C9BB	0.0136 (18)	0.0170 (16)	0.0230 (17)	0.0055 (14)	0.0091 (13)	0.0090 (14)
N2B	0.0152 (17)	0.0213 (15)	0.0199 (15)	0.0058 (13)	0.0082 (12)	0.0053 (13)
N1B	0.0159 (17)	0.0212 (16)	0.0218 (15)	0.0051 (13)	0.0059 (12)	0.0089 (13)
C9AA	0.0108 (17)	0.0171 (16)	0.0227 (17)	0.0063 (13)	0.0061 (13)	0.0097 (14)
O14	0.0171 (16)	0.0337 (17)	0.0419 (18)	0.0067 (14)	0.0090 (13)	0.0183 (15)
O2B	0.044 (2)	0.0232 (15)	0.0261 (16)	-0.0054 (15)	0.0121 (14)	0.0001 (13)
N2A	0.0143 (16)	0.0183 (15)	0.0204 (15)	0.0036 (13)	0.0079 (12)	0.0078 (13)
O1B	0.041 (2)	0.0267 (16)	0.0269 (16)	0.0122 (15)	0.0188 (14)	0.0082 (13)

C8A	0.018 (2)	0.0217 (18)	0.0253 (19)	0.0010 (15)	0.0075 (14)	0.0110 (16)
C1B	0.0146 (19)	0.027 (2)	0.0265 (19)	0.0001 (16)	0.0046 (15)	0.0126 (17)
C5AA	0.0125 (18)	0.0186 (16)	0.0216 (17)	0.0048 (14)	0.0054 (13)	0.0084 (14)
C8BB	0.0135 (18)	0.0170 (16)	0.0200 (17)	0.0054 (14)	0.0059 (13)	0.0071 (14)
C6B	0.018 (2)	0.0215 (18)	0.0217 (18)	-0.0018 (15)	0.0029 (14)	0.0101 (15)
C3AA	0.0131 (18)	0.0191 (17)	0.0221 (17)	0.0052 (14)	0.0071 (13)	0.0081 (15)
C7B	0.0141 (19)	0.027 (2)	0.032 (2)	0.0036 (16)	0.0082 (15)	0.0167 (18)
O2A	0.0292 (19)	0.0374 (18)	0.0263 (16)	-0.0060 (15)	0.0049 (13)	0.0072 (14)
C4B	0.030 (2)	0.0157 (16)	0.0217 (18)	0.0058 (16)	0.0103 (15)	0.0074 (15)
C3B	0.022 (2)	0.034 (2)	0.029 (2)	0.0143 (18)	0.0161 (16)	0.0173 (18)
C6A	0.021 (2)	0.0190 (17)	0.028 (2)	0.0041 (16)	0.0067 (16)	0.0072 (16)
N1A	0.0147 (16)	0.0157 (14)	0.0283 (17)	0.0022 (13)	0.0067 (13)	0.0088 (13)
C8AA	0.0115 (17)	0.0159 (16)	0.0230 (17)	0.0058 (14)	0.0053 (13)	0.0082 (14)
C5A	0.020 (2)	0.0210 (17)	0.0225 (18)	0.0056 (16)	0.0096 (14)	0.0079 (15)
C4A	0.019 (2)	0.0229 (18)	0.0253 (19)	0.0061 (16)	0.0080 (15)	0.0092 (16)
C8B	0.019 (2)	0.0259 (19)	0.0256 (19)	0.0088 (17)	0.0120 (15)	0.0093 (17)
C5BB	0.0178 (19)	0.0158 (16)	0.0190 (16)	0.0041 (14)	0.0067 (13)	0.0072 (14)
C3BB	0.017 (2)	0.0208 (17)	0.0221 (18)	0.0069 (15)	0.0078 (14)	0.0089 (15)
C2A	0.019 (2)	0.0214 (18)	0.032 (2)	0.0022 (16)	0.0058 (16)	0.0133 (17)
C2B	0.014 (2)	0.034 (2)	0.038 (2)	0.0055 (18)	0.0094 (16)	0.020 (2)
C3A	0.016 (2)	0.028 (2)	0.031 (2)	0.0050 (16)	0.0104 (15)	0.0172 (18)
O13	0.027 (2)	0.047 (2)	0.090 (4)	0.0095 (18)	0.030 (2)	0.043 (2)
C7A	0.023 (2)	0.0181 (18)	0.032 (2)	0.0001 (16)	0.0096 (16)	0.0109 (17)
C5B	0.026 (2)	0.0156 (16)	0.0233 (19)	0.0044 (16)	0.0083 (15)	0.0067 (15)
C1A	0.0139 (18)	0.0171 (17)	0.030 (2)	0.0028 (14)	0.0060 (14)	0.0114 (15)
O12	0.043 (3)	0.073 (3)	0.043 (2)	0.004 (2)	0.0069 (18)	0.026 (2)
011	0.047 (3)	0.0230 (18)	0.099 (4)	0.0105 (18)	0.026 (3)	0.023 (2)

Geometric parameters (Å, °)

Ag—N2A	2.261 (3)	C5AA—C5A	1.478 (6)
Ag—N1B	2.331 (4)	C8BB—C5BB	1.403 (5)
Ag—N2B	2.349 (3)	C6B—C7B	1.375 (6)
Ag—N1A	2.453 (4)	C6B—C5BB	1.397 (6)
Cl-013	1.385 (4)	C6B—H6BA	0.9300
Cl-011	1.404 (4)	СЗАА—СЗА	1.388 (5)
Cl—O14	1.439 (4)	C3AA—C4A	1.492 (6)
Cl012	1.485 (5)	C7B—C8B	1.398 (6)
O1A—C4A	1.220 (5)	С7В—Н7ВА	0.9300
C9BB—N1B	1.345 (5)	O2A—C5A	1.215 (5)
C9BB—C3BB	1.389 (6)	C4B—C3BB	1.500 (6)
C9BB—C8BB	1.487 (6)	C4B—C5B	1.537 (7)
N2B—C8B	1.329 (6)	C3B—C3BB	1.386 (6)
N2B—C8BB	1.346 (5)	C3B—C2B	1.387 (6)
N1B—C1B	1.347 (6)	СЗВ—НЗВА	0.9300
C9AA—N1A	1.341 (5)	C6A—C7A	1.369 (6)
С9АА—СЗАА	1.392 (5)	С6А—Н6АА	0.9300
C9AA—C8AA	1.488 (5)	N1A—C1A	1.351 (5)
O2B—C5B	1.207 (5)	C5A—C4A	1.527 (6)

N2A—C8AA	1.339 (5)	C8B—H8BA	0.9300
N2A—C8A	1.344 (5)	C5BB—C5B	1.475 (6)
O1B—C4B	1.204 (5)	C2A—C3A	1.379 (6)
C8A—C7A	1.381 (6)	C2A—C1A	1.383 (6)
С8А—Н8АА	0.9300	С2А—Н2АА	0.9300
C1B—C2B	1.380 (6)	C2B—H2BA	0.9300
C1B—H1BA	0.9300	СЗА—НЗАА	0.9300
C5AA—C8AA	1.396 (5)	С7А—Н7АА	0.9300
C5AA—C6A	1.399 (6)	C1A—H1AA	0.9300
N2A—Ag—N1B	129.69 (12)	O1B—C4B—C3BB	122.1 (4)
N2A—Ag—N2B	158.05 (13)	O1B—C4B—C5B	120.0 (4)
N1B—Ag—N2B	71.16 (12)	C3BB—C4B—C5B	117.9 (4)
N2A—Ag—N1A	70.77 (11)	C3BB—C3B—C2B	118.4 (4)
N1B—Ag—N1A	144.28 (12)	СЗВВ—СЗВ—НЗВА	120.8
N2B—Ag—N1A	95.79 (12)	С2В—С3В—НЗВА	120.8
013—Cl—011	115.7 (3)	C7A—C6A—C5AA	118.8 (4)
O13—Cl—O14	111.8 (2)	С7А—С6А—Н6АА	120.6
011—Cl—014	110.3 (3)	С5АА—С6А—Н6АА	120.6
013—Cl—012	105.8 (3)	C9AA—N1A—C1A	117.8 (4)
011—Cl—012	105.6 (3)	C9AA—N1A—Ag	113.5 (2)
O14—Cl—O12	106.9 (3)	C1A—N1A—Ag	127.8 (3)
N1B—C9BB—C3BB	122.2 (4)	N2A—C8AA—C5AA	121.3 (4)
N1B—C9BB—C8BB	116.7 (4)	N2A—C8AA—C9AA	118.2 (3)
C3BB—C9BB—C8BB	121.1 (4)	С5АА—С8АА—С9АА	120.4 (4)
C8B—N2B—C8BB	119.0 (4)	02A—C5A—C5AA	123.5 (4)
C8B—N2B—Ag	124.3 (3)	O2A—C5A—C4A	119.2 (4)
C8BB—N2B—Ag	116.1 (3)	C5AA—C5A—C4A	117.1 (3)
C9BB—N1B—C1B	117.7 (4)	01A—C4A—C3AA	122.7 (4)
C9BB—N1B—Ag	117.6 (3)	O1A—C4A—C5A	119.9 (4)
C1B—N1B—Ag	124.6 (3)	C3AA—C4A—C5A	117.3 (4)
N1A—C9AA—C3AA	121.4 (3)	N2B—C8B—C7B	123.5 (4)
N1A—C9AA—C8AA	117.1 (4)	N2B—C8B—H8BA	118.2
C3AA—C9AA—C8AA	121.5 (4)	C7B—C8B—H8BA	118.2
C8AA = N2A = C8A	118 5 (3)	C6B—C5BB—C8BB	118 6 (4)
C8AA—N2A—Ag	119.7 (2)	C6B—C5BB—C5B	1199(4)
C8A—N2A—Ag	121.8 (3)	C8BB—C5BB—C5B	121.5 (4)
N2A - C8A - C7A	1233(4)	C3B—C3BB—C9BB	119 5 (4)
N2A—C8A—H8AA	118.4	C3B— $C3BB$ — $C4B$	119.5 (1)
C7A - C8A - H8AA	118.4	C9BB-C3BB-C4B	120.8(4)
NIB-CIB-C2B	123 2 (4)	C_{3A} C_{2A} C_{1A}	120.0(1) 1180(4)
N1B—C1B—H1BA	118.4	C3A - C2A - H2AA	121.0
C2B—C1B—H1BA	118.4	C1A - C2A - H2AA	121.0
C8AA - C5AA - C6A	119.3 (4)	C1B - C2B - C3B	1189(4)
C8AA - C5AA - C5A	120.6 (4)	C1B = C2B = H2BA	120.6
C6A = C5A A = C5A	120.0 (1)	C3B - C2B - H2BA	120.0
N2B-C8BB-C5BB	121 3 (4)	$C^2A - C^3A - C^3A A$	118 8 (4)
N2B—C8BB—C9BB	117.8 (3)	$C^2A - C^3A - H^3A A$	120.6
C5BB-C8BB-C9BB	120 8 (4)	C3AA = C3A = H3AA	120.0
C7B_C6B_C5BB	119 8 (4)	C64_C74_C84	118 7 (1)
	117.0 (+)	CON -C/A-COA	110.7 (4)

С7В—С6В—Н6ВА	120.1	С6А—С7А—Н7АА	120.6
С5ВВ—С6В—Н6ВА	120.1	С8А—С7А—Н7АА	120.6
СЗА—СЗАА—С9АА	120.0 (4)	O2B—C5B—C5BB	123.2 (4)
C3A—C3AA—C4A	120.2 (4)	O2B—C5B—C4B	119.2 (4)
С9АА—С3АА—С4А	119.8 (4)	C5BB—C5B—C4B	117.5 (3)
C6B—C7B—C8B	117.7 (4)	N1A—C1A—C2A	123.9 (4)
С6В—С7В—Н7ВА	121.1	N1A—C1A—H1AA	118.0
C8B—C7B—H7BA	121.1	C2A—C1A—H1AA	118.0
N2A—Ag—N2B—C8B	19.0 (5)	C5A—C5AA—C8AA—N2A	177.0 (4)
N1B—Ag—N2B—C8B	-177.5 (4)	С6А—С5АА—С8АА—С9АА	-179.7 (4)
N1A—Ag—N2B—C8B	-31.7 (4)	С5А—С5АА—С8АА—С9АА	-0.6 (6)
N2A—Ag—N2B—C8BB	-170.1 (3)	N1A—C9AA—C8AA—N2A	-5.4 (5)
N1B—Ag—N2B—C8BB	-6.6 (3)	C3AA—C9AA—C8AA—N2A	173.7 (4)
N1A—Ag—N2B—C8BB	139.2 (3)	N1A—C9AA—C8AA—C5AA	172.3 (4)
C3BB—C9BB—N1B—C1B	-1.3 (6)	СЗАА—С9АА—С8АА—С5АА	-8.5 (6)
C8BB—C9BB—N1B—C1B	177.5 (3)	C8AA—C5AA—C5A—O2A	-161.6 (4)
C3BB—C9BB—N1B—Ag	-179.1 (3)	C6A—C5AA—C5A—O2A	17.5 (7)
C8BB—C9BB—N1B—Ag	-0.3 (4)	C8AA—C5AA—C5A—C4A	15.2 (6)
N2A—Ag—N1B—C9BB	175.6 (3)	C6A—C5AA—C5A—C4A	-165.7 (4)
N2B—Ag—N1B—C9BB	3.5 (3)	C3A—C3AA—C4A—O1A	11.3 (6)
N1A—Ag—N1B—C9BB	-69.5 (4)	C9AA—C3AA—C4A—O1A	-169.4 (4)
N2A—Ag—N1B—C1B	-2.0 (4)	C3A—C3AA—C4A—C5A	-166.4 (4)
N2B—Ag—N1B—C1B	-174.1 (4)	С9АА—С3АА—С4А—С5А	12.9 (6)
N1A—Ag—N1B—C1B	112.9 (3)	O2A—C5A—C4A—O1A	-21.9(7)
N1B—Ag—N2A—C8AA	150.5 (3)	C5AA—C5A—C4A—O1A	161.0 (4)
N2B—Ag—N2A—C8AA	-50.0 (5)	O2A—C5A—C4A—C3AA	155.9 (4)
N1A—Ag—N2A—C8AA	4.6 (3)	С5АА—С5А—С4А—С3АА	-21.2(5)
N1B—Ag—N2A—C8A	-30.2 (4)	C8BB—N2B—C8B—C7B	0.2 (6)
N2B—Ag—N2A—C8A	129.3 (4)	Ag—N2B—C8B—C7B	170.8 (3)
N1A—Ag—N2A—C8A	-176.1 (3)	C6B—C7B—C8B—N2B	0.1 (7)
C8AA—N2A—C8A—C7A	0.7 (6)	C7B—C6B—C5BB—C8BB	-2.4 (6)
Ag—N2A—C8A—C7A	-178.5 (3)	C7B—C6B—C5BB—C5B	177.6 (4)
C9BB—N1B—C1B—C2B	-0.2 (6)	N2B—C8BB—C5BB—C6B	2.8 (6)
Ag—N1B—C1B—C2B	177.4 (3)	C9BB—C8BB—C5BB—C6B	-179.4 (4)
C8B—N2B—C8BB—C5BB	-1.7 (6)	N2B—C8BB—C5BB—C5B	-177.2 (4)
Ag—N2B—C8BB—C5BB	-173.1 (3)	C9BB—C8BB—C5BB—C5B	0.6 (6)
C8B—N2B—C8BB—C9BB	-179.5 (4)	C2B—C3B—C3BB—C9BB	-1.3 (6)
Ag—N2B—C8BB—C9BB	9.1 (4)	C2B—C3B—C3BB—C4B	178.7 (4)
N1B—C9BB—C8BB—N2B	-6.0 (5)	N1B—C9BB—C3BB—C3B	2.1 (6)
C3BB—C9BB—C8BB—N2B	172.9 (4)	C8BB—C9BB—C3BB—C3B	-176.7 (4)
N1B—C9BB—C8BB—C5BB	176.2 (3)	N1B—C9BB—C3BB—C4B	-177.9(4)
C3BB—C9BB—C8BB—C5BB	-5.0 (6)	C8BB—C9BB—C3BB—C4B	3.3 (6)
N1A—C9AA—C3AA—C3A	0.3 (6)	O1B—C4B—C3BB—C3B	1.3 (7)
С8АА—С9АА—С3АА—С3А	-178.8 (4)	C5B—C4B—C3BB—C3B	-177.7 (4)
N1A—C9AA—C3AA—C4A	-179.0 (4)	O1B—C4B—C3BB—C9BB	-178.7 (4)
С8АА—С9АА—С3АА—С4А	1.9 (6)	C5B—C4B—C3BB—C9BB	2.3 (6)
C5BB—C6B—C7B—C8B	1.0 (6)	N1B—C1B—C2B—C3B	0.9 (7)
C8AA—C5AA—C6A—C7A	0.9 (6)	C3BB—C3B—C2B—C1B	-0.1 (6)
C5A—C5AA—C6A—C7A	-178.2 (4)	C1A—C2A—C3A—C3AA	-0.7 (6)
	. /		· /

C3AA—C9AA—N1A—C1A	-0.1 (6)	С9АА—СЗАА—СЗА—С2А	0.1 (6)
C8AA—C9AA—N1A—C1A	179.1 (3)	C4A—C3AA—C3A—C2A	179.4 (4)
C3AA—C9AA—N1A—Ag	-170.2 (3)	C5AA—C6A—C7A—C8A	1.0 (6)
C8AA—C9AA—N1A—Ag	9.0 (4)	N2A—C8A—C7A—C6A	-1.9 (7)
N2A—Ag—N1A—C9AA	-7.3 (3)	C6B—C5BB—C5B—O2B	4.6 (6)
N1B—Ag—N1A—C9AA	-139.6 (3)	C8BB—C5BB—C5B—O2B	-175.4 (4)
N2B—Ag—N1A—C9AA	154.9 (3)	C6B—C5BB—C5B—C4B	-175.1 (4)
N2A—Ag—N1A—C1A	-176.1 (4)	C8BB—C5BB—C5B—C4B	4.9 (6)
N1B—Ag—N1A—C1A	51.5 (4)	O1B-C4B-C5B-O2B	-5.0 (7)
N2B—Ag—N1A—C1A	-14.0 (3)	C3BB—C4B—C5B—O2B	173.9 (4)
C8A—N2A—C8AA—C5AA	1.3 (6)	O1B-C4B-C5B-C5BB	174.7 (4)
Ag—N2A—C8AA—C5AA	-179.4 (3)	C3BB—C4B—C5B—C5BB	-6.4 (6)
C8A—N2A—C8AA—C9AA	179.0 (3)	C9AA—N1A—C1A—C2A	-0.6 (6)
Ag—N2A—C8AA—C9AA	-1.7 (5)	Ag—N1A—C1A—C2A	167.9 (3)
C6A—C5AA—C8AA—N2A	-2.1 (6)	C3A—C2A—C1A—N1A	1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C8A—H8AA···O1B ⁱ	0.93	2.54	3.170 (5)	125
C1B—H1BA···O14 ⁱⁱ	0.93	2.50	3.380 (5)	157
C8B—H8BA···O11 ⁱ	0.93	2.58	3.155 (6)	121
C1A—H1AA···O2B ⁱⁱⁱ	0.93	2.47	3.159 (5)	131
C6B—H6BA···O2A ^{iv}	0.93	2.47	3.203 (5)	136
C6A—H6AA···O13 ^v	0.93	2.45	3.235 (6)	142
C8B—H8BA···O1A ^{vi}	0.93	2.48	3.158 (6)	130
C2A—H2AA···O12 ^{vii}	0.93	2.55	3.268 (6)	134
C3A—H3AA···O11 ^{vii}	0.93	2.57	3.464 (7)	162

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x-1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x+1, y+1, z+1; (v) x, y-1, z-1; (vi) -x+1, -y+1, -z; (vii) x+1, y, z-1.

Fig. 1

